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EFFECTIVE THERMAL AND ELECTRICAL CONDUCTIVITIES
OF ANISOTROPIC DISPERSED MEDIA

R. Z. Grinberg, A. D. Terekhov, UDC 536.21
and E. M. Sher

We obtain formulas for determining the principal values of the thermal-conductivity and
electrical~conductivity tensors of materials obtained by the pressing of a powder consisting
of anisofropic grains.

Present-day industry makes extensive use of a number of materials obtained by pressing of a powder
consisting of anisotropic particles. Thus, for example, the branches of thermoelements used in refrigera-
tors and generators are obtained by pressing pulverized ternary alloys with a Bi,Te; base {1] which have
strong anisotropy in the original (single-crystal) state.

Even though the powder is isotropic before pressing, after the pressing it displays anisotropic properties,
although to a lesser degree than in a single crystal. These phenomena were mentioned in [2-4]. The authors
of those studies attributed the phenomenon to the presence of microcracks.

However, an explanation of the anisotropy phenomenon on the basis of microcracks alone is unjustified.
In [5] it was shown that the anisotropy in thermal conductivity and electrical conductivity that may arise as a
result of porosity in the pressing process is much lower than the observed value, and, consequently, cracks
alone cannot explain the anisotropy. It should also be noted that in {2], although the anisotropy was attributed
to the presence of microcracks, it was stated outright that no microcracks were observed. In [4] it is noted
that specimens made of pressed material have a "visible texture, " indicating the presence of a certain degree
of disorder in the dispersed particles which results from pressing.

We shall show below that the anisotropy of pressed specimens can be completely explained by the appear-
ance of a degree of disorder in the orientation of the dispersed particles with respect to the direction of press~
ing.

For this purpose, we shall derive relations for the effective thermal conductivity negr and the effective
electrical conductivity ogff of a dispersed material consisting of anisotropic particles.

We shall solve the problem for the following assumptions.

1. In deriving the relation, we shall start from the fundamental assumption that a dispersed medium is
a system of chaotically arranged anisotropic particles whose orientation is characterized by a differential dis-
tribution function with respect to some direction.

2. At distances much greater than the dimensions of the individual grains the dispersed medium is spa-
tially homogeneous.
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dv =dxdydz

Fig.1. Element of a dispersed
anisotropic medium (1) individ~-
ual grains].

3. We shall assume that we know the components of the thermal-conductivity and electrical-conduc~
tivity tensors for a single crystal along the principal axes: %y, Yyys Nzz and Oxx, Oyys Ozze

4. The effects of the grain boundaries are negligible.

5. A dispersed particle has the average dimensions I, lys 15, respectively, in the directions of the
principal axes X, Y, Z.

Such a problem was solved in [6,7]. However, the results of [6] are confined to the case of axial sym-
metry in the individual crystals making up a polycrystal and also to the case of a low degree of inhomogeneity
(i.e., the cases of weakly anisotropic crystals and small dispersion in the orientation of the crystallites).

Odelevskii's study [7] is restricted by the assumption that the crystalline particles are "not elongated™
and can be simulated by spheres (whereas the grains of ternary alloys with a Bi,Te; base, owing to their high
cleavability, have a lenticular shape, with a thickness-to-diameter ratio of about 1/4) and also by the assump-
tion of equal probability of distribution of the grains along various directions, which is valid only when there
is no anigotropy in the pressed specimen. We shall not adopt such restrictions.

Since the relations for the electrical-conductivity tensor are completely analogous to the relations for
the thermal-conductivity tensor, all the derivations below will be carried out for the case of thermal conduc-
tivity.

Consider an element of volume of the dispersed medium dv = dxdydz, where we assume that the quanti-
ties dx, dy, dz are much larger than the dimensions of individual grains. We select the z axis of the Carte-

sian coordinate system to lie along the pressing axis. Since the directions perpendicular to the pressing axis
are equivalent, the orientation of the x and y axes may be arbitrary.

With each grain of the pressed system we associate a Cartesian coordinate system X, Y, Z whose axes
will be directed along the principal axes of the thermal-conductivity and electrical-conductivity tensors of the
individual grain; the components of these tensors in the directions of the X, Y, Z axes will be %xx, Oxx:

Nyys Oyys Yzzs Ozzs respectively.

The orientation of the X, Y,‘ Z axes with respect to the system of coordinates x, y, z will be character-

ized by the Eulerian angles ¢, ¥, 6 (Fig.1). In view of the chaotic orientation of the grains, the angles ¢, ¢,
6 will be random quantities.

Let the temperature gradient lie along the z axis (the pressing axis). We. define the effective thermal
conductivity in this pressing direction as Aggf .

Any straight line drawn in the volume element dv parallel to the z axis will intersect some number of
grains of the dispersed system (see Fig.1). We denote the segment of this line which lies inside an individual

particle by A, Obviously, A is a function of the angles ¢, ¥, ¢ and of the coordinates of the center of inertia
of the grains, x, y, z:

A=Fy(x, 9, 2, o, {, 0). @
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TABLE 1. Effective Values of Thermal Conductivity and Electrical

Conductivity
Galculated values kxpers {! Calcnlated values [Experi-
Conductivity middlei end |mental|! Conductivity midde| end |mental
H
P (side) | face [values | ! °p . (side)| face ivalues
n-type alloy: 809, Bi,Te,—209 BigSes)  p-type alloy: 7494 ShyTe;—260;BisTey)
Heffz, Heff z, '
wem "t deg™! |0,61]0,65]|0,62)0,635 || w. % deg™ | 0,73 | 0,783 0,74 | 0,836
Yeffxr | Tefixy
Wem~ " deg” 0,93 | 0,945: 0,94 | 0,925 | wW+m™ 'deg 0,90 | 0,935 0,90 ; 0,925
ceffz- 10%, effx-lo
o-Lm™ _4 3,0 13,5 30 ;2,7 3,75 14,20 | 3,85 | 4,00
Oeff x +10 i ! ceffx'lo
otem 9,6 9,75 9,6 {38,0 Qlamy=t 8,25 | 7,90 | 8,00 ! 8,00
oeffx/"effz 3,2 12,8 {3,2 |29 Geffx/ceffz 2,201,901 2,082
veffx/Heffz | 1,52 | 1,451 1,61 | 1,46 ' g o /Mo, i 1,23 | 1,14 1 1,22 1 1,1
i 1 N

In view of assumption 1, the coordinates x, vy, z and the angles ¢, ¥, 6 are independent random quanti-
ties, and, consequently, we can average the quantity A with respect to x, y, z. The averaging process yields
AaV = F1(‘P’ Z/), 9)-

The thermal conductivity ®,, of the material of the grain in the direction of the z axis will be [8]

%, = %,, C08% 0 - %, sin? @sin?@ -+ x,_ sin*@ cos® . 2)
For heat flux in the direction of the z coordinate we then have
9= ATiA,,, ®)

where AT is the temperature drop across an individual particle of the dispersed system.

In order to determine the temperature difference dT over a length dz, we must sum the temperature
drops over all the particles intersected by the z axis along a length dz. To do this, we must know the prob-

ability that the Eulerian angles will have values equal to ¢, ¥, and §. This probability will be characterized
by the differential distribution function for the Eulerian angles, f{g, ¢, 9).

Since ¢, ¥, 0 are independent random variables, it follows that f(¢, ¥, ) can be represented in the
form of a product [9]

Flo, ¥, 0)=F ()7 (P F2(0). (4)

Thus, the number of particles dN intersected by a straight line over the length dz for which the z axis
has direction cosines corresponding to the angles ¢, ¢, 6 will be

1

AN = ——- f(g, ¢, 0) dzdgdyds. (5)
Aav
Making use of (3)~(5), we find
Qn’T "_:';'( ;.I 6
g 5 V] Bav L @) Fa () F (0) dodydodz = dT. ®
S Yy av
[} 0 0
Since
daT
=gt~ ()
it follows that for Notf 7 WE obtain from (3), (6), (7) the expression
1
Yeffz= 3537 a " . (8)
f ( ( F1 (@) [ (¥) [5 (B) depdydd
Jo ] S #,,C0s% 0 — %, Sin? @ sin®0 -4- %, cos’ ¢ sin®H
0 0

Similarly, for the direction of the y and x axes we obtain
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1
Y ‘ (’ £ (@) o (9) F, (8) dpdpd
b 5

Xefty~ : (9

@ (@, ¥, 0)

where
D (@, P, 6) = 2,, cos® P Sin*B +- x,, (cos P cos @ cos B — sin P sin @) + %, (cOs ¢ sin - sin g cos P cos 6)?,
and 1
%trx ox 2@ W (10)
S‘ S 1) [s (¥) T3 (6) dpdipd8
F(o, ¥, 0)
9 9 o

where

F(p, P, 0) ==x,, sin®Psin®0 + %yy (COSP sin @ - sin P cos ¢ cos )2 - x,, (cos P cos ¢ — sin ¢ sin P cos 8)>.

Formulas (8)-(10) are the desired relations for determining the effective thermal conductivity. The
formulas for og¢f are obviously obtained by a simple substitution of o for n.

In order to determine “eff and ceff, we must know the distribution functions f{(¢), f2®), and f3(0),
which can be obtained by x-ray structural analysis.

We conducted investigations of the anisotropy of the branches of thermoelements obtained by powder
metallurgy from the ternary alloy BiyTe; +Bi,Se; and Sb,Te, +Bi,Tes,

The original powder had isotropic properties. Because of the high cleavability of the material along
planes perpendicular to the Z direction, the particles had the shape of a lamella, with a much smaller dimen-
sion in the Z direction than in the X and Y directions. The dimensions along X and Y varied between 0.2 and
2 mm for powders of various degrees of granularity.

Since the single crystal is axially symmetric with respect to the Z axis,

7(':(':c: = %yy and Gxx = ny‘ (11)

Despite the isotropic properties of the original powder, during the pressing process, because of the
characteristic form of the grains, the individual lamallae slip with respect to one another along cleavage
planes, and as a result the pressed material displays anisotropic properties. Since axial.symmetry is en-
sured by the pressing conditions, it follows that if we choose the z axis in the direction of pressing, there
will be no anisotropy in the angles ¢ and ¢, i.e.,

f1(9) = const and f, (¢) = const. (12)
Taking account of (11) and (12), we can write Egs. (8)- (10) in the following form:
1
Teff,= = , (13)
f f5(6)do
%, 00870 -L %, sin?0
1
xeffy: T o 4 (14)
Y j [5(8) diydb
J ) ;€08 2§ sin? 0 + (1 — cos® P sin® 6)
0 0
1
C KeffxT S . (15)
J‘ [5.(6) dpd®
) %y, SIN° Psin? 8 + 2, (1 — sin® 1 sin0)
¢ 0
Averaging with respect to the angle 9 in (14) and (12), we obtain
1
Heffx= Yeffy=" E : (16)
( f3(8)do
j V oy, (8, sin® 0 -+ %, cos?6)
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The distribution function f3(8) was obtained from x-ray structural analysis data [in (16}, f3(6) is nor-
malized].

The results of the experimental determination of f3(8) for specimens of various degrees of granularity
are given in [4]. According to the data of [4], in pressed specimens there is strong anisotropy in the orienta-
tion of the crystals, which must also affect the amount of anisotropy in the coefficients » and o. In [4] the
absence of any texture in two cases in the middle of the specimen should be attributed not to the absence of
anisotropy, but to the fact that in order o take x-ray pictures in the middle of the specimen, the experiment-
ers cut it into two parts, which probably led in some cases to a breakdown of the structure and to a change
in the anisotropy in comparison with whole specimens.

In Table 1 we show the experimentally measured effective values of electrical conductivity Ooff 7o Teffx=
Teffys the effective values of the lattice component of the thermal conductivity ®effz, Neffx = Reffys and the
ratlos of the coefficients ogpp ./ Tetf 5 and Nepr i/ Magf 5 (characterizing the anisotropy in the x and z d1rect1ons)
and the same coefficients obtained by calculation using formulas (13) and (16). The calculations were carried
out for specimens of types n and p (see Table 1), with grain sizes ranging from 0.2 to 0.25 mm for the n-type
and from 1 to 2 mm for the p-type. The calculations performed for specimens of types n and p with different
granularity (from 0.05 to 2 mm) yielded analogous results.,

The components of the electrical-conductivity and thermal-conductivity tensors along the principal axes
for the material of the grains are the following [4]:

n-type: 0, = 2.10.10* o tm™; o, =0y, =12.10" o7l o}
%, = 0.526 W.m™! - deg’l; % *xx:,zyy=1.02 w-ml . deg™h
o = 183.107% v. deg 7%,

p-type: 6,,==2.50-10* @ "Lm™; 0,,=0,,=10.0-10 o Lm™}
#,,=0.647 Wem™rdeg™; . =%,,=0.98 W-m™-deg™
2=210-10"% vedeg. .

The calculated values in Table 1 are shown for three values of the distribution function f3(0), which
characterize the orientation of the grains both near the surface ("top," "end face") and in the middle ("middle,"
"side™). As can be seen from the table, the calculated values are in satisfactory agreement with the experi-
mental data.

Thus, it must be recognized that the observed anisotropy in the values of % and ¢ in pressed specimens
can be completely explained by the orientation of the grains during the pressing process, and the conclusions
drawn in [4] concerning the absence of grain orientation in pressed specimens are based on an incorrect treat-
ment of the data obtained by x-ray structural analysis.

NOTATION

®, lattice component of thermal conductivity; o, specific electrical conductivity; g, heat flux; T, ab-
solute temperature; x, y,z, axes of Cartesian coordinate system associated with the pressed specimen (where
the z axis coincides with the pressing direction); X, Y, Z, axes of Cartesian coordinate system associated
with an individual grain.
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